Bring ideas to life VIA University College

DES Refrigeration circuit, theory

Lecture 2

Understand the refrigeration process

How to use energy energy balance methodology for the process How to use the log P, H diagram (manually and with Cool Pack)

Energy Balance methodology

- 1. Add numbers to identify the different parts of the process
- 2. Add know information on eg. massflow, temperatures, pressure to the drawing
- 3. Draw Control Volumes for the total system and parts of the system to be analyzed.
- 4. Find enthalpies for latent processes: Refrigerants (log P h-diagram), air with condensation or humidification (hx-diagram). Find cp values for sensible processes: Water, dry air and other substances (tables)
- 5. Calculate energy flow in and out of each control volume using energy balance equations.

Overall principle Refrigerator

Single stage refrigeration circuit Cold store example

Symbols, units and terms

- Φ_o kW Cooling capacity
- Φ_c kW Condenser performance
- P_i kW Compressor shaft power
- q_o kJ/kg Specific refrigeration capacity
- q_c kJ/kg Specific condensation capacity
- w_i kJ/kg Specific work of the compressor
- p_o bar Evaporator pressure
- p_c bar Condenser pressure
- t_o °C Evaporator temperature
- t_c °C Condenser temperature
 - q_{m,R}kg/s Mass flow rate of refrigerant
 - Mass flow rate of cooling water
 - g/s Mass flow rate of cooling air
- q_{m,w}kg/s
 q_{ma} kg/s

Refrigeration circuit

Energy balance

$$\Phi_{\rm o} + \Phi_{\rm c} + P_{\rm i} = 0$$

The equation is valid for a steady process.

If we use specific form, meaning quantity of energy per kg refrigerant, we get:

$$q_{o} + q_{c} + w_{i} = 0$$

It is presupposed that the compression process is uncooled, meaning it is an adiabatic process.

THE IDEAL VAPOR-COMPRESSION REFRIGERATION CYCLE

The **vapor-compression refrigeration cycle** is the ideal model for refrigeration systems. Unlike the reversed Carnot cycle, the refrigerant is vaporized completely before it is compressed and the turbine is replaced with a throttling device.

- 1-2 Isentropic compression in a compressor 2-3
 - Constant-pressure heat rejection in a condenser
- Throttling in an expansion device 3-4
- 4-1 Constant-pressure heat absorption in an evaporator

This is the most widely used cycle for refrigerators, A-C systems, and heat pumps.

Schematic and T-s diagram for the ideal vapor-compression réfrigeration cycle.

Cooling capacity

For a given refrigerant mass flow qmR the following applies: The cooling capacity:

$$\Phi_{o} = q_{mR} (h_1 - h_4) = q_{mR} q_{o}$$

The condenser capacity: $\Phi_c = q_{mR} (h_2 - h_3) = q_{mR} q_c$

The throttling process (ideal): $h_3 = h_4$

The compressor shaft power: $P_i = q_{mR} (h_2 - h_1) = q_{mR} w_i$

Refrigerant mass flow

Refrigerant mass flow q_{mR} is calculated from evaporator or condenser capacity.

For a **refrigeration system** given cooling capacity Φ_o is needed:

$$q_{mR} = \frac{\Phi_o}{h_1 - h_4}$$

For a **<u>heat pump</u>** a given condenser capacity Φ_c is needed:

$$q_{mR} = \frac{\Phi_c}{h_2 - h_3}$$

Log P-h diagram Overview

Log P-h diagram

Refrigeration circuit in log P-h diagram

Log P,h diagram

Log P,h diagram exercise Circuit plot

Assume an ideal refrigeration process has the following data:

- Evaporation temperature: $t_0 = -10$ °C
- Condensation temperature: t_c = 40 °C
- Ideal means compression is isentropic

Plot the process in the log P, h diagram., let us use R290 (natural refrigerant)

Log P,h diagram exercise. Solution

Log P,h diagram exercise Cooling capacity, mass flow

An ideal refrigeration process has the following data:

- Evaporation temperature: $t_0 = -10$ °C
- Condensation temperature: tc = 40 °C
- Ideal means compression is isentropic
- The cooling capacity is $\Phi_0 = 50$ kW.

Find h4 and h1.

Calculate the refrigerant mass flow.

Log P,h diagram exercise. Solution

Coefficient Of Performance COP

As a measure of the effectiveness of a refrigeration system or a heat pump, Coefficient Of Performance = COP is used.

$$COP = \frac{Useful \, energy}{Suplied \, energy}$$

COP for refrigeration system and heat pump

For a refrigeration system:

$$COP_{cool} = \frac{\Phi_o}{P_i} = \frac{q_o}{w_i}$$

If the efficiency of the electrical motor is included, we get: $COP_{cool} = \frac{\Phi_o}{P_{el}}$

For a heat pump system:

$$COP_{HP} = \frac{\Phi_c}{P_i} = \frac{q_c}{w_i}$$

If the efficiency of the electrical motor is included, we get: $COP_{HP} = \frac{\Phi_c}{P_{el}}$

COP Question

- Condenser capacity: 4 kW
- Evaporator capacity: 3 kW
- Electrical power: 1 kW

Calculate COP for refrigeration and heat pump.

Log P,h diagram COP

An ideal refrigeration process has the following data:

- Evaporation temperature: $t_0 = -10$ °C
- Condensation temperature: tc = 40 °C
- Ideal means compression is isentropic
- The cooling capacity is $\Phi_0 = 50$ kW.

Find h1 and h2.

Calculate COP for the refrigeration process Use : R744, R717, R1270, R123, R22

Log P,h diagram exercise. Solution

Superheating and subcooling

Superheating

To avoid liquid in the compressor the gas after the evaporator is often superheated.

We are often dealing with superheating of $\Delta t_{sh} = 2 - 8^{\circ}C$

Subcooling

Flash gas is avoided if there is a suitable subcooling. Another benefit of subcooling is increased cooling capacity $\Phi_{o.}$ We are often dealing with subcooling of $\Delta t_{sc} = 2 - 10^{\circ}C$.

Log P,h diagram Superheating and subcooling

An ideal refrigeration process has the following data:

- Evaporation temperature: $t_0 = -10$ °C
- Condensation temperature: t_c = 40 °C
- Ideal means compression is isentropic
- The cooling capacity is $\Phi_0 = 50$ kW.
- Superheating and subcooling is both 5 K.

Calculate the new mass flow if cooling capacity stays the same. Calculate the new COP.

Log P,h diagram exercise. Solution

